Search
Vanessa Timo Fear Lassmann BSc (Hons), PhD BSc (Hons) MSc PhD Head, Translational Genetics Team Feilman Fellow; Head, Precision Health Research and
Seven female individuals with multiple congenital anomalies, developmental delay and/or intellectual disability have been found to have a genetic variant of uncertain significance in the mediator complex subunit 12 gene. The functional consequence of this genetic variant in disease is undetermined, and insight into disease mechanism is required.
This study explores the incidence of preoperative hypophosphatemia and whether hypophosphatemia may have affected patient or trial outcomes for those who received ferric carboxymaltose
Time-critical transcriptional events in the immune microenvironment are important for response to immune checkpoint blockade (ICB), yet these events are difficult to characterise and remain incompletely understood. Here, we present whole tumor RNA sequencing data in the context of treatment with ICB in murine models of AB1 mesothelioma and Renca renal cell cancer.
Genomic sequencing in congenital heart disease (CHD) patients often discovers novel genetic variants, which are classified as variants of uncertain significance (VUS). Functional analysis of each VUS is required in specialised laboratories, to determine whether the VUS is disease causative or not, leading to lengthy diagnostic delays.
Burn injury in children causes prolonged systemic effects on physiology and metabolism leading to increased morbidity and mortality, yet much remains undefined regarding the metabolic trajectory towards specific health outcomes.
The Australian Genomics Cardiovascular Disorders Flagship was a national multidisciplinary collaboration. It aimed to investigate the feasibility of genome sequencing and functional genomics to resolve variants of uncertain significance in the clinical management of patients and families with cardiomyopathies, primary arrhythmias, and congenital heart disease.
There are an estimated > 400 million people living with a rare disease globally, with genetic variants the cause of approximately 80% of cases. Next Generation Sequencing (NGS) rapidly identifies genetic variants however they are often of unknown significance.
Over 400 million people worldwide are living with a rare disease. Next Generation Sequencing identifies potential disease causative genetic variants. However, many are identified as variants of uncertain significance and require functional laboratory validation to determine pathogenicity, and this creates major diagnostic delays.
SETBP1 Haploinsufficiency Disorder (SETBD) is characterised by mild to moderate intellectual disability, speech and language impairment, mild motor developmental delay, behavioural issues, hypotonia, mild facial dysmorphisms, and vision impairment. Despite a clear link between SETBP1 mutations and neurodevelopmental disorders the precise role of SETBP1 in neural development remains elusive.